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ABSTRACT Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional spine deformity with lateral curvature
having a Cobb angle exceeding 10° in the individual. It affects about 1-4 percent of adolescents globally and more
frequently occurs in females than males. Despite the extensive research carried out on AIS, its aetiology is not known
yet. However, several genetic studies suggest the contribution of various genetic variants in the possible aetiology of
AIS. This review summarises the genetic association studies, including linkage, candidate as well as genome-wide
association studies that were carried out globally on AIS and also categorised the associated genes in different
biological pathways such as neurodevelopmental, hormone-related, cartilage and bone development pathways, based
on their potential functional roles in the respective pathway, to understand the pathology of the disorder.

*Address for correspondence:
Dr. Swarkar Sharma
Associate Professor,
Centre for Molecular Biology,
Central University of Jammu,
Jammu and Kashmir, India
Mobile: +91-9419955636
E-mail: swarkar.molb@cujammu.ac.in
Dr. Ekta Rai
School of Life Sciences,
Jawaharlal Nehru University,
New Delhi 110 067, India
Mobile: +91-9906385394

INTRODUCTION

The word scoliosis is derived from a Greek let-
ter ‘Σκολιωση’ (ský’lû-ý’sÎs), which means crook-
ed, accompanied by 3D sideways spinal curva-
ture, which is measured by determining the Cobb
angle (Cheng et al. 2015). An individual is said to
have scoliosis if the Cobb angle is greater than or
equal to 10° (Kuznia et al. 2020). The scoliosis curve
generally progresses during spinal growth. It is
broadly categorised into three types according to
the age of onset of the disorder. Infantile scoliosis
develops below three years, juvenile scoliosis
(three to ten years), and adolescent scoliosis de-
velops after the age of ten years or during puberty

(Wajchenberg et al. 2016; Mitsiaki et al. 2022). Some
other types of scoliosis are congenital (associated
with defects in vertebral formation during foetal
development), neuromuscular (related to cerebral
palsy, Duchenne muscular dystrophy), and syn-
drome-related (associated with Marfan syndrome,
neurofibromatosis) (Janicki and Alman 2007; Karpe
et al. 2020). Scoliosis developed due to an unknown
mechanism is classified as an idiopathic type
(Cheng et al. 2015; Menger and Sin 2023). AIS is
more prevalent among adolescent individuals (Wa-
jchenberg et al. 2016). Globally, a strong genetic
association has been found with the development
and progression of AIS. The genetic basis of idio-
pathic scoliosis has been built since the 1920s (Fad-
zan and Bettany-Saltikov 2017) and witnessed great-
er prevalence in first-degree relatives of the scoli-
otic patients as well as by the twin studies that
reported a high concordance rate in monozygotic
twins than in dizygotic twins (Kesling and Reinker
1997; Cheng et al. 2022). The linkage, candidate
gene association, and genome-wide association
studies (GWAS) have reported many susceptible
genes associated with AIS (Peng et al. 2020). How-
ever, the total said variations could only explain 5
percent of the disease heritability, suggesting that
most of its genetic heritability is still unknown (Shar-
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ma et al. 2015). The primary reason for undefined
heritability is unsubstantial mechanistic interpre-
tations of the current list of candidate genes as-
sociated with a lack of data defining their functional
roles and interaction as a pathway towards disease
pathogenesis.

This review provides a comprehensive over-
view of the available literature associated with the
genetics of AIS, including the GWAS, candidate
gene association, and linkage-based studies and
their replication studies conducted in different
populations of the world. Furthermore, to better
understand the etiopathogenesis of AIS, the asso-
ciated genes are categorised into specific biological
pathways based on their potential functional roles.

METHODOLOGY

The current review is an updated comprehen-
sive literature survey of all the genetic association
studies conducted on AIS globally.

Search Strategy

The literature survey was conducted on sever-
al databases, including PubMed, Google Scholar,
GWAS Catalog, GWAS Central, and Web of Sci-
ence. The “anytime” time filter was used to extract
all the genetic associations of AIS. A combination
of search terms was used to retrieve the studies
from the databases (“Adolescent Idiopathic Scoli-
osis”, “Idiopathic Scoliosis”, “Syndrome Related
Scoliosis”, “Genetic Association Studies”, “Case-
Control Association”, “Linkage Study”, “Candi-
date Genes”, “Genome-Wide Association Study”,
“Family-Based Association Study”, “Exome Se-
quencing”, “Replication Study”, “Meta-Analy-
sis”). Furthermore, to identify the potentially perti-
nent studies, the independent screening of article
titles and abstracts was done.

Categorisation of Genes Under Biological
Pathways

The genes that were found associated with AIS
in the extracted studies were categorised under
different biological pathways based on the infor-
mation available in the corresponding study itself
or by curating different databases, including “On-
line Mendelian Inheritance in Man (OMIM)”, “Pro-

tein Analysis Through Evolutionary Relationships
(PANTHER)”, and “Kyoto Encyclopedia of Genes
and Genomes (KEGG)”.

RESULTS

To unravel the AIS aetiology, extensive re-
search has been done globally that suggests the
role of genetics in its development. Around 60 AIS
susceptibility loci/alleles have been analysed thus
far in more than 70 genetic studies via linkage,
GWA, and candidate gene association studies in
different populations of the world. In Table 1, the
researchers have comprehended all these associa-
tions along with their possible roles in specific
pathways for the pathogenesis of AIS. Around
thirty-three genes were studied for AIS suscepti-
bility in multiple ethnicities using linkage, GWAS,
and candidate studies, which belong to the differ-
ent biological pathways. Out of these genes, twelve
genes (MATN1, MATN1-AS1, COL11A2, COL5A2,
COL6A3, COL11A1, FBN1, FBN2, DOT1L,
CALM1, VDR, AKAP2) have a role in cartilage and
bone development pathway, ten genes (CHD7,
TNIK, MAGI, MEIS1, KCNJ2, CHL1, DSCAM,
CNTNAP2, EPHA4, CELSR2) were found to have
a role in neurodevelopmental and axonal pathway,
six genes (LBX1, LBX1AS1, ADGRG6, PAX1,
PAX3, SOX6) belong to other developmental path-
way, and five genes (ESR1, ESR2, IGF-1, LEPR,
MTNR1B) have a role in hormone-related path-
way. Most of these AIS susceptible reported be-
long to cartilage and bone pathways as well as
neurodevelopmental pathways, suggesting the
major role of these pathways in the AIS aetiology.
Of these, the majority of the associated variants
are intronic and exhibit low to moderate disease
risk, as defined by their odds ratio of less than 2.0.
This observation suggests that these variants
might not be the actual causative variant for AIS
susceptibility but may lie in close proximity/strong
LD with actual functional (regulatory or in the exon)
variant(s), which strongly recommends fine map-
ping of the AIS susceptible genomic segments/
genes, in order to delineate the actual causative vari-
ants. Moreover, there are many disorders that are
accompanied with the scoliosis-like phenotype. Sev-
eral studies have identified different genes/variants
associated with such disorders, as comprehended
in Table 2.
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DISCUSSION

Genetic Studies of AIS

To unravel the AIS aetiology, extensive re-
search has been done globally that suggests the
role of genetics in its development. Around 60 AIS
susceptibility loci/alleles have been analysed thus
far in more than 70 genetic studies via linkage,
GWA, and candidate gene association studies in
different world populations. In Table 1, the research-
ers have comprehended all these associations and
their possible roles in specific pathways for the
pathogenesis of AIS.

Several susceptible loci for AIS have been dis-
covered using family-based linkage analysis. These
studies sought to identify a region of the genome
co-segregated through families along with the par-
ticular phenotype of interest (Silverman and Palm-
er 2000). Previous linkage studies conducted on
idiopathic scoliosis (IS) were inspired by the hy-
pothesis that IS susceptibility might occur due to
the changes in the structural elements of the spine.
Therefore, polymorphisms in the COL1A1,
COL1A2, elastin (ELN), and fibrillin 1 (FBN1) genes
have been examined for AIS susceptibility in the
family pedigrees. However, the results of these stud-
ies did not indicate any evidence of association of
these genes with IS (Miller et al. 1996; Wise et al.
2008). Moreover, linkage studies have identified
around 13 AIS-susceptible chromosomal regions
harbouring potential causative genes involved in
neurodevelopmental, Axon guidance, hormonal,
and bone/cartilage developmental pathways.

More than 50 candidate genes association stud-
ies (CGAS) have been conducted (mostly in Chi-

nese, Bulgarian and Japanese populations) to un-
derstand the genetics of AIS. In candidate gene
analysis studies, genes are selected according to
the evidence of their involvement in the disease
pathogenesis, based on the understating of the
basic biology of the disease (Zhu and Zhao 2007).
Interestingly, based on AIS linkage signals from the
genes involved in neurodevelopmental, Axon guid-
ance, hormonal, and bone/cartilage developmental
pathways, around 28 genetic loci/variants have been
evaluated for AIS association by CGAS. However,
many candidate gene associations replicated
poorly across different populations.

GWAS is a chip-based high throughput mi-
croarray technology that exploits a genome-wide
dense array of tagging single nucleotide polymor-
phisms (SNP) to map risk loci (usually Linkage Dis-
equilibrium blocks) within the genome (Bush and
Moore 2012; Tam et al. 2019). As a powerful strate-
gy to explore the genetics of complex disorders in
the population, GWAS have been conducted in
different population groups of the world (Chinese,
Japanese, Hispanic, Non-Hispanic blacks and
whites) and helped in discovering various novel
AIS susceptible loci, including LBX1, PAX1,
GPR126, BNC2, PAX3, BCL2, CHL1 genes, which
are mainly involved in neurodevelopmental, carti-
lage/bone developmental and axon guidance path-
ways (Sharma et al. 2011; Kou et al. 2013; Zhu et al.
2015; Zhu et al. 2017). Interestingly, some of these
genes were reported to have a vital role in the
pathogenesis of various syndromes in which scoli-
osis is developed as a secondary phenotypic fea-
ture, which confirms their possible role in disease
pathogenesis (Table 2).

Table 2: Syndromes that shows scoliosis like phenotypes

Syndrome Gene Feature

Charge CHD7 Coloboma, Cranial nerve abnormalities,
Choanal atresia, Scoliosis.

Andersen-Tawil Syndrome KCNJ2 Muscle weakness (periodic paralysis), changes in
  heart rhythm (arrhythmia), and
  developmental abnormalities including scoliosis.

Horizontal Gaze Palsy with Progressive Scoliosis Robo 3 (axon guidance) Affects eyes and have severe scoliosis.
Marfan Syndrome FBN1 Affects heart and blood vessels, eyes, skin and

  skeletal system. Symptoms include
  dolichostenomelia,joint laxity, scoliosis and
  pectus excavatum or pectus.

Ehlers-Danlos Syndrome COL5A1, COL5A2, Loose joints, stretchy skin, muscle fatigue,
  skeletal abnormalities including scoliosis.

Stickler Syndrome COL11A1, COL2A1, Distinctive facial features, spinal abnormalities
  COL9A1, COL11A2   including scoliosis.
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GWAS assay common SNPs, which define only
a subset of genetic predisposition of the complex
diseases with low to moderate impact (as per Table
1, the odds ratio is below 2 for AIS). Rare variants
with strong functional effects must be analysed
for disease association to understand the overall
heritability of complex diseases. High-throughput
next-generation sequencing technologies make it
possible to study the impact of such rare variants
on complex diseases. Using whole exome sequenc-
ing, several studies have identified strong associ-
ations of rare functional variants (odds ratio lie
between 2.5-4.5) with severe AI cases (Table 1).

Genes and Their Biological Pathways Associated
with AIS

The section below provides a detailed insight
into AIS susceptible loci/genes (mentioned in Ta-
ble 1 and Table 2) and their categorisation into
specific biological pathways based on potential
functional roles.

Nervous System and AIS

Scoliosis is a common phenotypic feature of
neuromuscular or neurological disorders, includ-
ing Duchenne’s muscular dystrophy, spinal mus-
cular atrophy, and many more (Kolb and Kissel
2015; Yiu and Kornberg 2015). Neurological anom-
alies reported in individuals with AIS support the
hypothesis that dysfunction in the nervous sys-
tem might contribute to the aetiology of the AIS
(Krober and Zwolak 2017). Anomalies of the vesti-
bular, visual, postural control, and proprioceptive
systems, as well as aberrant structures in the CNS,
have been associated with equilibrium disruption
and asymmetrical cortical hyperexcitability, which
may result in the onset of AIS (Liu et al. 2008). It
has been observed that some of the AIS patients
do have low-lying cerebellar tonsils, cervicotho-
racic syrinx, and aberrant cerebrospinal fluid dy-
namics in the hindbrain. MRI images revealed the
reduction of white matter in the brain of AIS pa-
tients (Peng et al. 2020). All these studies suggest
the association of the nervous system with AIS.

Genes of Neurodevelopment Pathway Associated
with AIS

Genes in neurodevelopmental pathways have
been previously identified as associated with AIS

aetiology. A linkage genome-wide scan on 52 fam-
ilies with familial idiopathic scoliosis (FIS) has iden-
tified the association of 8q12 loci with AIS. Fur-
ther, the fine mapping of the region in 52 families of
European ancestry revealed the association of the
CHD7 gene with IS. Resequencing exons of CDH7
further reported that the functional polymorphism
disrupted the caudal type transcription binding
site (Gao et al. 2007), and this caudal transcription
factor has a crucial role in the embryonic axial skeletal
development (Subramanian et al. 1995).

In contrast, no association was reported be-
tween familial idiopathic scoliosis (FIS) and CHD7
in European families. Furthermore, a meta-analysis
of 52 families (Gao et al. 2007) and 244 families with
FIS revealed no correlation between the FIS phe-
notype and the CHD7 gene (Tilley et al. 2013).
However, case-control studies reported variations
in CHD7 that showed an association with AIS in
Caucasian females (Borysiak et al. 2020) and in the
Chinese population (Wu et al. 2021).

The 188 kbp-long CHD7 gene has 42 exons on
chromosome 8 (8q12.2). CHD7 is a member of the
ATP-dependent chromatin remodelling enzymes
family and is present in the nucleolus and the nu-
cleoplasm (Hall and Georgell 2007; Zentner et al.
2010). It is highly expressed in different regions of
the brain (Hurd et al. 2007; Jamadagni et al. 2021;
Reddy et al. 2021). The CHD7 gene regulates
 the protein formation that organises chromatin to
govern developmental pathways. It binds with the
promoter of SOX 4 and SOX11. It enhances their
expression by remodelling Sox4 and Sox11 pro-
moters to an open chromatin state crucial for neu-
ronal differentiation in neural stem cells (Schnetz
et al. 2009; Feng et al. 2013; Schnetz et al. 2010).
CHD7 gene mutations produce an abnormally
short, non-functional chd7 protein, which disrupts
gene expression and causes disrupted neural crest
formation (Aramaki et al. 2006). A study discov-
ered that CHD7 has a tissue-specific effect and is
crucial in developing migratory multipotent neural
crest cells (Bajpai et al. 2010). Mutations in this
gene are primarily related to CHARGE syndrome.
This genetic condition develops congenital anom-
alies such as choanal atresia, coloboma, cardiac
abnormalities, growth and development retarda-
tion of the individual, genitourinary malforma-
tions, and ear abnormalities (Hartshorne et al.
2021). Globally, about 1:16,000 newborns have
CHARGE syndrome (Issekutz et al. 2005; Jans-
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sen et al. 2012), and about 60 percent of those devel-
op scoliosis as a secondary phenotype, suggesting a
link between CHARGE and AIS in terms of aetiology
(Gao et al. 2007).

In a GWAS, variants in MAGI1, MEIS1, and
TNIK were identified that showed an association
with AIS (Zhu et al. 2017). However, these previ-
ously reported associations were not further repli-
cated in any other study. MAGI1 protein assem-
bles multiprotein complexes in cell-cell contact ar-
eas on the inner plasma membrane surface (Do-
brosotskaya et al. 1997; Kotelevets and Chastre
2021). This gene product is a scaffolding protein
for the cell-cell junction (Mino et al. 2000; Excoffon
et al. 2022). It also functions like a scaffolding mol-
ecule for the NGF (neuron growth factor) receptor-
mediated signalling cascade (Ito et al. 2013). Magi-
I is more abundant in some rat neural tissues, in-
cluding the dorsal root entry zone of the spinal
cord as well as the glomeruli of the adult rat’s olfac-
tory bulb (Ito et al. 2012). MEIS1 (Meis Homeobox
1) gene-encoded homeobox protein belongs to
homeodomain-containing TALE (three amino acid
loop expansion) proteins (Jiang et al. 2021). Meis1
acts like a DNA-binding cofactor of Hox proteins
(Garcia-Cuellar et al. 2015). It is crucial for develop-
ing many organs, including the peripheral and cen-
tral nervous systems. This gene is reportedly as-
sociated with restless legs syndrome, a nervous
system disorder (Salminen et al. 2019). A recent
study suggests its role in cortical development by
regulating cell migration and proliferation in the
cerebral cortex of the embryo (Isogai et al. 2022).
The tnik protein, which has scaffolding and kinase
domains, is linked to cell proliferation and postsyn-
aptic signalling. Its expression is highly found in
the nervous system (Mahmoudi et al. 2009; Shitash-
ige et al. 2010; Coba et al. 2012). The tnik is a regula-
tory element for the beta-catenin transcriptional com-
plex (Mahmoudi et al. 2009; Masuda et al. 2015).
Further, the Wnt beta-catenin pathway showed high-
ly asymmetric expression in the bilateral paraspinal
muscles in individuals with AIS (Zhu et al. 2017).
This study highlights the importance of the wnt/
beta-catenin pathway in the aetiology of AIS, as
these genes (MAGI1, MEIS1, TNIK) had been earli-
er reported to have some regulatory function in Wnt/
beta-catenin pathway (Dobrosotskaya and James
2000; Mahmoudi et al. 2009; Stephens et al. 2010;
Masuda et al. 2015). More studies are warranted to
evaluate these genes’ role in AIS aetiology.

Genes of Axon Guidance Pathway That Are
Associated with AIS

Horizontal gaze palsy is a rare autosomal con-
dition marked by a lack of conjugate horizontal eye
movements with severe scoliosis. This condition
develops due to the mutation in the (ROBO3)
roundabout guidance receptor 3 gene, which en-
codes an axon guidance protein (Pinero-Pinto et
al. 2020). It is highly expressed in the spinal cord
commissural neurons of an embryo (Jen et al. 2004;
Sabatier et al. 2004). Like ROBO3, CHL1 (close
homolog of L1) also encodes the axon guidance
protein (Qiu et al. 2014). Therefore, CHL1 might
also have an essential role in AIS pathogenesis.
This has been evidenced by a GWAS study
where a genetic locus in the juxtaposition of the
CHL1 gene has shown an association with the AIS
in non-Hispanic blacks, non-whites and non-His-
panic whites (Sharma et al. 2011). In the same study,
the DSCAM and CNTNAP2 gene genetic variants
also showed an association with AIS susceptibility
(Sharma et al. 2011).

Furthermore, the CHL1 gene did not show any
association with AIS in the case-control studies
carried out in Han Chinese females (Qiu et al. 2014)
and the Bulgarian population (Yablanski et al.
2016a). Chl1 is a neural cell adhesion molecule,
which belongs to the immunoglobulin-class 1 fam-
ily. During development, it is essential for neurite
outgrowth, axon guidance, and neuronal differen-
tiation. Chl1 controls the plasticity and activation
of synaptic connections in the nervous system
(Guseva et al. 2018). CHL1 is primarily expressed
in the neuronal system and is crucial for several
neuronal functions, such as axon development,
apical dendrite direction, and positioning and mi-
gration of neurons (Schmid and Maness 2008; Liu
et al. 2011). The absence of Chl1 can cause the
somatosensory thalamic axons to lose their topog-
raphy (Wright et al. 2007). DSCAM is located on
human chromosome 21 and is an axon guidance
molecule in invertebrates and vertebrates (An-
drews et al. 2008; Liu et al. 2009). During spinal
cord development, DSCAM also promotes the pro-
jection of the commissural axon and path-finding
over the ventral midline to reach the floor plate
(Wu et al. 2015). The DSCAM gene knockdown in
the embryos of zebrafish results in severe anterior/
posterior axis shortening. The partial knockdown
of DSCAM produces crooked-tailed embryos (Yiml-
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amai et al. 2005), suggesting that DSCAM might be
involved in the development of the scoliotic con-
dition. CNTNAP2 belongs to the neurexin family,
located at chromosome 7q35, and is a cell adhesion
molecule in the nervous system at the developing
stage (Nakabayashi and Scherer 2001).

Further, CNTNAP2 promotes the neuron’s in-
teraction with the glia during nervous system de-
velopment and is essential in potassium channel
localisation within differentiating axons (Poliak et
al. 2003). It encodes neurexin IV, necessary for axon
guidance pathways through its interaction with the
roundabout molecule (Banerjee et al. 2010). Multi-
ple neurodevelopmental problems, including schizo-
phrenia, epilepsy, autism, and mental retardation,
were reported to be associated with CNTNAP2
mutations (Verkerk et al. 2003; Strauss et al. 2006;
Alarcon et al. 2008; Friedman et al. 2008; Zweier et al.
2009). Till now, no direct relation of this gene with
AIS development has been reported.

EPHA4 knockdown is another gene of this
pathway found implicated with AIS. A GWAS has
identified a genetic locus between EPHA4 and
PAX3, showing an association with AIS in a group
of Chinese girls (Zhu et al. 2015). EPHA4 gene
belongs to the EPH receptor subfamily. EPH re-
ceptors are thought to have a significant function
in the normal regulation of developmental process-
es, particularly in the nervous system (Frisen and
Barbacid 1997; Yang et al. 2018). It controls many
axonal guidance processes, including the forma-
tion of corticospinal projections (Coonan et al.
2001). Along with axonal guidance, it regulates
synaptic plasticity too. Developing neuromuscu-
lar circuits may also control the segregation of
motor and sensory axons (Gallarda et al. 2008).

CELSR2 is another gene identified to be asso-
ciated with AIS. Linkage analysis identified a ge-
netic locus located at chromosome 1 with a high
risk for IS in a Swedish family in which IS is segre-
gated in the dominant mode of inheritance pattern.
Further, the exome sequencing of two affected
members has been carried out, which revealed a
rare non-synonymous variation in CELSR2. This
association was not further replicated in the inde-
pendent cohort of Japan and the US (Einarsdottir
et al. 2017). Its expression is primarily observed in
the neuronal tissues, such as the occipital pole,
temporal lobe, postcentral gyrus, and adult spinal
cord. It is essential for axon pathfinding, cilium
polarity, and neuronal migration (Boutin et al. 2012;
Feng et al. 2012; Qu et al. 2014).

All these pieces of evidence suggest that the
axon guidance pathway is vital in the AIS patho-
genesis. More studies are warranted to compre-
hend the importance of axon guidance pathway
contribution to AIS.

Genes of Hormone-related Pathways Associated
with AIS

The association between hormones and AIS is
significant, and this has been established by dou-
ble-neuro osseous theory, which proposes that
during the developmental disharmony between the
nervous, somatic as well as autonomic systems in
the spine and the trunk, along with the higher lev-
els of the hormones leads to the overgrowth of the
skeletal system. Therefore, the dysfunction of one
or both mechanisms may lead to the AIS develop-
ment (Burwell et al. 2009). AIS develops during the
growing period of children when there are a lot of
hormonal changes inside the body (Sharma et al.
2015). Adolescence is a time of rapid physical de-
velopment during which the levels of several hor-
mones in the body that control bone growth and
development rapidly changes. Various studies iden-
tified that AIS patients had abnormal levels of many
hormones, indicating the possible role of hormonal
factors in the AIS susceptibility (Willner et al. 1976;
Kulis et al. 2006; Qiu et al. 2007; Esposito et al. 2009;
Machida et al. 2009; Tam et al. 2016). Therefore, the
genes with some known function in the various
hormone-related pathways were considered poten-
tial candidate genes for studies related to AIS. Sev-
eral studies have reported many hormone receptor
genes associated with AIS susceptibility.

Estrogens

Estrogens are steroid hormones that can act
via two oestrogen receptors (ESR1 and ESR2) dis-
tributed widely in the human body and regulate
several developmental processes (Compston 2001;
Amenyogbe et al. 2020). Oestrogen receptors are
structurally and functionally different (Ascenzi et
al. 2006). In humans, these receptors’ expression is
highly found in bone growth plates (Nilsson et al.
2003; Chagin and Savendahl 2007). Its significant
effects on bone development are mediated through
ESR1 receptor activation (Maggiolini and Picard
2010; Borjesson et al. 2011). In bone metabolism,
oestrogen’s most essential effect is to stimulate
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bone growth by promoting osteoblast differentia-
tion and osteoclast apoptosis and inhibiting os-
teoblast apoptosis (Moverare et al. 2003; Nakamu-
ra et al. 2007). Low oestrogen levels and delayed
menarche can reduce bone mineralisation in fe-
males, resulting in an increased risk of bone defor-
mities (Liang et al. 2021). Various abnormal chang-
es have been observed in the oestrogen and its
receptor in AIS patients, such as oestrogen con-
centration in serum, age at menarche, cellular re-
sponse to oestrogen, and genetic variation in the
genes of the oestrogen receptor (Kulis et al. 2006;
Letellier et al. 2008). There are two main theories
regarding the role of oestrogen in AIS susceptibil-
ity. First, its abnormal levels result in delayed pu-
berty in females and bone formation and matura-
tion, which elevates the spine deformity risk (Gri-
vas et al. 2006; Sanders et al. 2007). Secondly, aber-
rant oestrogen levels directly impact bone metab-
olism and remodelling, resulting in improper bone
growth and development, which increases the risk
of AIS. Although estrogens were not thought to
be a direct causative factor for AIS due to their role
in bone growth and development by interacting
with various agents that regulate bone formation
and biomechanics (Leboeuf et al. 2009), it was hy-
pothesised that they might contribute to the AIS
susceptibility.

The two polymorphism sites Xba I (rs9340799)
(Chen et al. 2014a) and Pvu II (rs2234693) (Zhao et
al. 2009) in ESR1, and Alu I (rs4986938) (Kotwicki
et al. 2014), AlwN I (rs1256120) (Zhao et al. 2017)
and Rsa I (rs1256049) (Kotwicki et al. 2014) in the
ESR2 gene were identified to have an association
with idiopathic scoliosis. Xba l (rs9340799) has also
shown a significant association with the progres-
sion of IS in the Japanese cohort (Inoue et al. 2002),
in the Chinese female population (Wu et al. 2006),
and in the Bulgarian population (Yablanski et al.
2016b). However, the Xba I (rs9340799) and Pvu II
(rs2234693) associations have not been further rep-
licated in a larger female group of Chinese popula-
tion (Tang et al. 2006) and Caucasian female popu-
lation (Kotwicki et al. 2014). The genetic variant
AlwN I (rs1256120) of ESR2 was also reported to
be associated with spinal curve progression and
predisposition in the Chinese cohort (Zhang et al.
2009). However, no significant association has been
found in the larger cohort of the Japanese popula-
tion (Takahashi et al. 2011c) and in Caucasian fe-
males (Kotwicki et al. 2014). More studies in differ-

ent populations could help determine the signifi-
cance of ESR mutations with the susceptibility to
AIS.

Growth Hormone-insulin-like Growth
Factor-1 Axis

Among the numerous theories regarding the
aetiology of AIS, it is believed that AIS occurs due
to the abnormal growth pattern of vertebrae (Fad-
zan and Bettany-Saltikov 2017). The growth hor-
mone and IGF1 have a crucial role in skeletal de-
velopment. The level of GH increases during the
pubertal stage (Mauras et al. 1987; ROSE et al. 1991).
In addition to IGF-1, GH directly impacts various
types of bone cells. It increases bone development
and remodelling and regulates linear growth and
bone mass (Olney 2003). An earlier study reported
higher growth hormone levels in AIS individuals
during early puberty (Willner et al. 1976).

Furthermore, this was supported by a different
study that showed AIS patients had earlier puber-
tal development than people without AIS (Ylikoski
2003). Growth hormone treatment resulted in scoli-
osis development and progression (Wang et al.
1997; Park et al. 2021), which suggests the associ-
ation of AIS development with high growth hor-
mone activity. Further, the IGF-1 gene has been
observed to be associated with the severity of
spinal deformity in the Chinese population, but no
association has been reported with the AIS onset
(Yeung et al. 2006). The association of IGF-1 with
AIS susceptibility and its progression was also
observed in a small group of the Korean popula-
tion (Moon et al. 2013). The association was fur-
ther not replicated in the Japanese (Takahashi et
al. 2011b) and Bulgarian population (Nikolova et
al. 2015c). Therefore, further studies are required
to validate the association of the growth-regulating
genes with AIS.

Leptin

Leptin is essential in regulating appetite and
bone morphogenesis (Turner et al. 2013; Farooqi
and O’Rahilly 2014). Leptin and the soluble leptin
receptor (sOB-R) were found to have a crucial role
in regulating bone and energy metabolism (Up-
adhyay et al. 2015). Leptin improves muscle mass
by inhibiting troponin degradation and promotes
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muscle cell proliferation during muscular develop-
ment (Sainz et al. 2009). It is a permissive factor
regulating pubertal development (Apter 2003). The
aetiology of AIS could be linked to leptin and its
signalling system. A thin body and a low BMI are
common characteristics in women with AIS, which
are believed to be connected to leptin and adi-
ponectin. A genetic locus in LEPR was also asso-
ciated with the disease in the Chinese population
(Liu et al. 2015b). To validate this association, more
studies are required in different populations.

Melatonin

Melatonin is found primarily in all animals and
has a role in regulating the biological rhythm of the
body. Melatonin secretion levels are low through-
out the day and dramatically increase during the
night (Zhao et al. 2019). In addition to regulating
biological rhythms, melatonin is essential for sev-
eral biological processes, including bone growth
(Tordjman et al. 2017). The pinealectomy in chick-
ens induced severe scoliosis, which first suggest-
ed the association of melatonin and AIS. It showed
similar biological characteristics to that of idiopathic
scoliosis in humans. Melatonin deficiency is a caus-
ative agent of this experimental scoliosis (Machi-
da et al. 1995; Fagan et al. 2009). The impaired me-
latonin signalling was also reported in the cultures
of osteoblast prepared from specimens of bones
extracted during spine surgeries of the AIS pa-
tients (Moreau et al. 2004). Since pinealectomy
decreases melatonin release, low circulating mela-
tonin levels have been indicated as a plausible
factor in scoliosis development (Girardo et al. 2011).
Melatonin receptor 1A and melatonin receptor 1B
are the transmembrane receptors through which
melatonin exerts biological functions (Gall et al.
2002; Ahmad et al. 2023). The genes encoding the
melatonin receptor MTNR1A and MTNR1B were stud-
ied in different populations to find their possible role
in the pathogenesis of IS.

According to current evidence, inappropriate
downstream MTNR1B responses, but not MTNR1A
responses, may have a possible role in the AIS
development. In one earlier study, tag SNP rs4753426
in the MTNR1B was found in association with AIS
onset in the group Chinese population (Qiu et al.
2007). A meta-analysis study showed that the ge-
netic variant rs4753426 is associated with AIS in
Caucasian and Asian populations (Yang et al.

2015b). MTNR1B protein and mRNA levels in AIS
patients were considerably lower compared to non-
AIS individuals (Liang et al. 2021). In contrast, the
level of MTNR1A was normal in AIS patients, and
no variation in this gene has been observed to
have an association with AIS (Morcuende et al.
2003; Qiu et al. 2008; Yim et al. 2013). These studies
indicate that melatonin might be a causative factor
in the scoliosis development. However, the existing
evidence does not support a definitive function of
melatonin in AIS.

Other Developmental Genes

Several genetic studies carried out globally
using different approaches showed the associa-
tion of several variants of other genes with the
AIS. The most replicated and strongest associa-
tion with AIS is demonstrated by the variant at
10q24.32 near LBX1 (Londono et al. 2014). A GWAS
study first discovered three variants close to the
LBX1 gene in the Japanese population, and the
most significant SNP, rs11190870, is present down-
stream at 7.5 kb of the gene (Takahashi et al. 2011a).
This genetic locus was then successfully replicat-
ed in Chinese, Scandinavian, French Canadian, and
East Asian populations (Fan et al. 2012; Jiang et al.
2013; Gao et al. 2013; Liu et al. 2017; Nada et al.
2018; Man et al. 2019). Another functional variant,
rs1322330, present at the promoter site of this gene,
has been reported to have an association with AIS
in the Chinese population by regulating myogene-
sis in paraspinal muscles (Xu et al. 2021). LBX1
encodes a transcription factor known as ladybird
homeobox. This gene is expressed specifically dur-
ing early embryogenesis in the dermomyotome. It
regulates the gene expression that directs the lateral
migration of the muscle precursor cells and controls
their migration potential (Brohmann et al. 2000). It is
also essential for dorsal horn specification as well
as for somatosensory function (Gross et al. 2002).
Thus, LBX1 could also be involved in AIS neuro-
genic and myogenic pathogenesis (Wise et al. 2020).

SOX9 encodes a protein crucial in skeletal de-
velopment (Bi et al. 1999; Lefebvre et al. 2019). The
gene encodes the transcription factor involved in
chondrogenesis (Dy et al. 2012). Sox9 interacts with
Sox5/6 and regulates gene expression related to
the growth plate’s chondrogenesis (Liu et al. 2015a).
The gene is necessary for appropriate spine pat-
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terning and development in embryonic mice. It was
observed that the removal of SOX9 in embryonic
mice failed to produce well-patterned vertebral
bodies or intervertebral disk (IVD) tissues (Akiya-
ma et al. 2002). In skeletally mature mice, it was
found that SOX9 is constantly needed for main-
taining the homeostasis of the spine. In contrast,
its ablation was found to be causing kyphoscolio-
sis, disc compression, and IVD degeneration (Hen-
ry et al. 2012). This suggests that SOX9 is associ-
ated with spinal abnormalities and scoliotic phe-
notype, and thus, it has a plausible role in AIS
etiopathogenesis. The hypothesis was held firm
as the GWAS study in the Japanese population
reported common genetic loci rs12946942 near
SOX9 and KCNJ2 at chromosome 17, which was
associated with AIS (Miyake et al. 2013), depicting
the importance of this gene in the AIS aetiology.

ADGRG6 or GPR126 belongs to the adhesion
GPCR family and is essential for biological pro-
cesses, including the migration of cells and their
adhesion (Langenhan et al. 2013). The GWAS study
reported a genetic variant rs6570507 of GPR126
associated with AIS in Japanese, European-ances-
try populations, and Han Chinese and found de-
layed ossification of developing spine in the gpr126
knockdown zebrafish model (Kou et al. 2013). This
gene is further reported to have an association
with AIS in different studies (Xu et al. 2015; Kou et
al. 2018; Xu et al. 2019). Another functional locus,
rs9403380, has been identified in the southern Chi-
nese population, which regulates the expression
of GPR126 in the paraspinal muscles of AIS pa-
tients (Qin et al. 2017). In humans, the expression
of GPR126 was found to be high in cartilages and
intervertebral discs. In mouse embryos, its expres-
sion was reportedly increased in the spine carti-
lage, indicating its function in spine development
(Kou et al. 2013). It is also essential for the normal
axonal myelination and promyelination of differen-
tiating Schwann cell development (Monk et al. 2011;
Wise et al. 2020).

PAX3 is another developmental gene found to
have an association with AIS. In the neural tube,
the PAX3 controls myogenesis and neurogenesis
(Schubert et al. 2001; Young and Wagers 2010).
Additionally, PAX3 mutation might result in spinal
column deformity and muscular and neural tube
abnormalities (Rong et al. 1992; Boudjadi et al. 2018).
The primary lineage that expresses the PAX3 is the
lineage of skeletal muscles. The expression of PAX3

was initially observed in the paraxial mesoderm
during embryonic development and later confined
to the dermomyotome. Cells that express PAX3,
separate from the dermomyotome, in the central
body segments develop skeletal muscle. Cells ex-
pressing PAX3 move to other locations, such as
the limbs, where they develop into other skeletal
muscles (Buckingham and Reliax 2007). Postnatal
muscle growth and regeneration during later em-
bryonic stages are regulated by myogenic satellite
cells that express PAX3 and/or PAX7. A genetic
variant (rs13398147) between PAX3 and EPHA4 is
identified in a GWAS to be associated with the
disease in Chinese ancestry (Zhu et al. 2015). In
AIS patients, aberrant expression of PAX3 was re-
lated to abnormal paravertebral muscle development
(Qin et al. 2020), suggesting its possible functional
role in AIS development.

Similarly, PAX1 encoded paired box 1 protein is
a transcription factor that helps form sclerotome
and develop intervertebral discs (Wallin et al. 1994;
Wise et al. 2020). The expression of the PAX1 gene
is well described during somitogenesis in the grow-
ing mice embryo. Its expression was observed in
vertebral and intervertebral disc cells and in the
precursor cells of the connective tissue surround-
ing the dorsal root ganglia and spinal nerve (Mon-
soro-Burq 2003). The deletion and missense muta-
tions in PAX1 resulted in deformities and malfor-
mation of the spine, including scoliosis in the un-
dulated and scoli mouse strains (Adham et al. 2005).
Furthermore, the genetic study has also identified
the association between the PAX1 enhancer locus
and AIS in the European population. A similar as-
sociation is also observed in independent ethnic
groups like Japanese, North American, and in East
Asian female populations. Further, it was found
that this association is driven explicitly by the fe-
males and not by the males, suggesting it is a sex-
specific locus for AIS (Sharma et al. 2015). These
studies hint towards the contribution of PAX1 in
AIS pathogenesis.

Genes of Bone and Cartilage Development

Extracellular matrices (ECMs) provide structural
and biochemical support to the vertebral column
(Wise et al. 2020). Numerous studies have exam-
ined these extensively to unravel the aetiology of
AIS (Lowe et al. 2000). Scoliosis is the secondary
phenotypic characteristic of various disorders of
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connective tissues, including Marfan syndrome,
spondylocarpotarsal syndrome, stickler syndrome,
and Ehlers-Danlos syndrome, indicating the im-
portance of the genes of connective tissues, in the
development of AIS. Initially, research was con-
centrated on the COL1A1 (Carr et al. 1992),  COL1A2
(Carr et al. 1992; Miller et al. 1996), COL2A1 (Carr et
al. 1992), FBN1, and elastin (Miller et al. 1996), which
acts as the structural elements of the ECM system.
However, none of these genes showed any evi-
dence of association with idiopathic scoliosis in
studied populations. However, a recent genome-
wide pathway burden study using exome sequenc-
ing identified extracellular matrix genes as the prom-
inent class of genes that might contribute to the
polygenic nature of AIS.

Marfan syndrome, a connective tissue disor-
der, develops due to the pathogenic variations in
the fibrillin-encoding gene FBN1 (Coelho and
Almeida 2020). However, the mutations in FBN1
were also observed to be associated with isolated
kyphoscoliosis (Zorkol’tseva et al. 2002) as well as
with isolated skeletal features like scoliosis
(Milewicz et al. 1995; Reyes-Hernandez et al. 2016).
Earlier studies identified the fibrillin anomalies in
the fibroblasts of AIS patients (Hadley-Miller et al.
1994). However, the linkage analysis studies
showed no association of FBN1 with AIS (Miller
et al. 1996). An exome sequencing study identified
the association of the rare variants (chr15:48902952,
chr15:48826300, chr15:48796007, chr15:48795990,
chr15:48784766, chr15:48777634, chr15:48777609,
chr15:48773879, chr15:48764870, chr15:48760155,
chr15:48741087, chr15:48736768, chr15:48726873,
chr15:48725128, chr15:48712949, chr15:48703201,
chr5:127873139, chr5:127872157, chr5:127782238,
chr5:127713520, chr5:127704904, chr5:127681205,
chr5:127674750, chr5:127674724, chr5:127673755,
chr5:127671182, chr5:127627260, chr5:127613647,
chr5:127609564, and chr5:127607792) in FBN1 and
FBN2 with curve progression in AIS individuals of
the European population (Buchan et al. 2014). Fur-
thermore, the common genetic variant rs12916536 in
the FBN1 gene is substantially related to the AIS
development in the Chinese population (Sheng et
al. 2019). This association was recently replicated in
the Brazilian population (de Azevedo et al. 2022).

Matrilin 1 (MATN1), also called cartilage ma-
trix protein, is vital in the ECM assembly in differ-
ent tissues and is essential for spinal stability
(Chen et al. 1999; Zhang et al. 2014a). An intragen-

ic microsatellite variation in the MATN1 was asso-
ciated with AIS in 50 Italian trios (Montanaro et al.
2006). Similarly, variation in the promoter of the
MATN1 gene has shown an association with AIS
susceptibility and progression in the Chinese pop-
ulation (Chen et al. 2009). Another genetic variant
in this gene was associated with double curves in
patients with AIS in the Korean population (Bae et
al. 2012). Matrilin-1 is essential in organising chon-
drocytes into separate growth plate zones (Chen
et al. 1995; Chen et al. 2009). Chondrocyte zonal
distribution disruption could result in a musculosk-
eletal disorder like scoliosis (Goldring et al. 2006).
Study on MATN1 mutant mice showed phenotypes
like scoliosis, tail kinks, or kyphosis, making it a
potential gene for AIS development (Blank et al. 1999;
Giampietro et al. 1999; Chen et al. 2009).

DOT1L gene, located at chromosome position
19p13.3, was reported as a susceptibility locus for
AIS by linkage analysis study (Alden et al. 2006;
Chen et al. 2009). A case-control study identified a
genetic locus rs12459350 in the DOT1L associated
with AIS susceptibility and peak height velocity
during puberty (Mao et al. 2013). The gene DOT1L
is an evolutionarily conserved histone methyltrans-
ferase and is essential for the chondrogenic cells
differentiation and regulation of the cartilage thick-
ness by governing the activity of Wnt target genes
(Betancourt et al. 2012). Invitro silencing of the
gene DOT1L inhibits chondrogenic differentiation,
and the knockdown of the DOT1L gene decreases
the collagen and proteoglycan content and miner-
alisation during the process of chondrogenesis
(Betancourt et al. 2012). All this suggests the function
of DOT1L in cartilage development.

The calmodulin (CaM) protein is encoded by
the CALM1 (calmodulin 1 gene). Calmodulin con-
trols the calcium signal transduction, which regu-
lates downstream calcium signalling, like the con-
traction of skeletal muscles, agglomeration of plate-
lets, etc. (Liang et al. 2021). It is essential for inter-
cellular communication, cell differentiation, move-
ment, cell proliferation, and other biomechanical
and physiological activities (Hanley et al. 1990;
Rebas et al. 2012). Initially, in a study, it was report-
ed that the patients with IS had 2.5 times increased
calmodulin levels in their platelets, and the calm-
odulin level was substantially found to be related
to the spinal curve severity (Cantaro et al. 1985).
The mutation in the CALM1 was associated with
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the double curve predisposition in the Chinese
population (Zhao et al. 2009). Another study iden-
tified the three genetic loci rs2300496, rs2300500,
and rs3231718 of the CALM1 gene that are associ-
ated with AIS (Zhang et al. 2014b). The primary
role of calcium signalling is to regulate bone turn-
over and the regulation of both osteoclasts and
osteoblasts (Williams et al. 2010). Calcium calmod-
ulin signalling is also crucial for the response of
chondrocytes to mechanical load, which is signif-
icant for the normal functioning of the articular
(Poulou et al. 2008).

The VDR that codes a nuclear receptor for vi-
tamin D metabolites is present at chromosome po-
sition 12q12-q14 (Uitterlinden et al. 2002; Gasperi-
ni et al. 2023). VDR is a significant factor in vitamin
D’s biological activity and is essential for bone
mineral density (BMD) regulation and skeletal
metabolism (Uitterlinden et al. 2002; Reid 2017).
VDR polymorphisms have been reported to be as-
sociated with bone disorders, including osteoar-
thritis and osteoporosis (Martirosyan et al. 2016;
Xu et al. 2012). Because of the significant function
of VDR in the aetiology of many bone disorders,
several studies were performed to determine the
correlation between VDR and AIS aetiology. The
VDR gene also showed an association with AIS in
different studies. SNP rs1544410 in the VDR gene
is reported to be associated with low bone mass
and abnormal growth in Asian females (Xia et al.
2007), AIS (Wang et al. 2016), and low lumbar bone
mineral density as well as curve predisposition in a
female group of Korea (Suh et al. 2010). Moreover,
a meta-analysis study reported that the genetic
variants rs1544410 and rs7975232 in VDR are as-
sociated with the AIS aetiology in the Asian population
(Yin et al. 2018).

AKAPs are involved in creating signalling com-
plexes that govern the events of temporal and spa-
tial sequencing. The gene AKAP2 interacts with
the protein kinase A regulatory unit (McConnach-
ie et al. 2006; Sarma et al. 2015). In previous stud-
ies, the gene was associated with Kallmann syn-
drome and bone deformities (Panza et al. 2007). A
linkage study identified the locus on chromosome
9q31.2–q34.2 associated with AIS (Ocaka et al.
2008). Whole exome sequencing showed a signif-
icant association of the AKAP2 gene with AIS
predisposition in a Chinese family (Li et al. 2016).
However, this association has not been further
confirmed in the Chinese population cohort (Xu et

al. 2017). Its expression is highly detected in the
cartilaginous structure of mouse embryos. AKAPs
regulate the signalling of cyclic AMP-dependent
protein kinase (PKA) in space and time. PKA’s
dimerization/docking (D/D) domains are firmly
bound by the dual-specific AKAP2 and help in the
downstream signalling (Sarma et al. 2010). Further-
more, the PKA pathway was reported to regulate
bone growth and the anabolic skeletal response
(Kao et al. 2013; W. Li et al. 2016).

Status of Scoliosis in India

There is a scanty of information related to the
epidemiology of AIS in the Indian population. This
paucity of epidemiological evidence of scoliosis
explains the disease’s obscurity and misconcep-
tions in India. Few epidemiological studies have
been conducted in India. One of the prevalence
studies of AIS was conducted in Patiala, Punjab,
showed the prevalence of AIS as 0.13 percent (Mit-
tal et al. 1987), and the other in Assam reported a
prevalence of 0.2 percent (Saikia et al. 2002). Re-
cently, the researchers have carried out an epide-
miology study in the Jammu and Kashmir region
where a screening of 9500 school children was done.
The study reported an overall prevalence of AIS to
be 0.61 percent, with lower female predominance
(Singh et al. 2022b) in contrast to the global preva-
lence. This suggests that it might be a result of
genetic heterogeneity of the Indian population
compared to other populations of the world. So, to
unravel the genetic heterogeneity, the researchers
have conducted the first genetic study of AIS in
the Indian population where in the first phase of
the study, the researchers have genotyped the high-
ly replicated SNP rs11190870 nearby LBX1 in the
population of North India (Singh et al. 2022a). Fur-
thermore, the researchers have also evaluated the
association of the genetic variants in various previ-
ously reported genes in the population of northwest
India (the results are still unpublished).

Future Prospective

Large-scale school-based scoliosis screening is
warranted in the Indian population to understand
the epidemiology of the disease. Genetic studies
comprising large sample sizes are pertinent in differ-
ent population groups of India to unravel the
genetic aetiology of scoliosis.
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CONCLUSION

Understanding the association of genetic vari-
ants with the disease is a crucial objective of ge-
netics. Intuitively, one can anticipate that disease-
causing variations cluster into key pathways in-
fluencing disease biology. Most of the AIS genet-
ic studies are conducted in the population of East
Asian and Caucasian origin. Based on all the ge-
netic studies conducted globally on AIS, it was
found that most of the AIS susceptibility loci are
associated with the pathways of neurodevelop-
ment and axon guidance, followed by body devel-
opment, cartilage development, bone development
pathways, and hormonal-related pathways. Most
of the associated variants are intronic and exhibit
low to moderate disease risk, as defined by their
odds ratio of less than 2.0. This observation sug-
gests these variants might not be the causative
variant for AIS susceptibility but may lie nearby/
strong LD with actual functional (regulatory or in
the exon) variant(s). It was also observed that many
AIS candidate gene associations replicated poorly
across different populations. The probable reasons
include the lack of power of the study or population
stratification issues and genetic heterogeneity in
the population.

RECOMMENDATIONS

To unravel the potentially disease-causing vari-
ants, it becomes pertinent to conduct large-scale
genetic studies in genetically diverse population
groups, including South-Asian populations, Afri-
can, Hispanic, and many more. In addition, based
on understanding the possible role of risk alleles
in disease-specific pathways, gene-gene, and gene-
environmental interaction analysis must be per-
formed to make meaningful mechanistic interpre-
tations of the current list of candidate genes, which
may add to the genetic heritability of the disorder.
Also, fine map the AIS susceptible genomic seg-
ments/genes to delineate the actual causative vari-
ants) is strongly recommended. Further, to under-
stand the overall heritability of AIS, rare variants
with strong functional impact must be analysed
for AIS association, which is successfully feasible
using high-throughput next-generation sequencing
technologies.

ABBREVIATIONS

AIS: Adolescent Idiopathic Scoliosis
GWAS: Genome-wide association studies
CHD7: Chromodomain helicase DNA-binding
protein 7
FIS: Familial idiopathic scoliosis
MAGI1: Membrane-associated guanylate ki-
nase, WW, and PDZ Domain Containing 1
MEIS1: Meis Homeobox 1
TINK: Traf2 and NcK interacting kinase
ROBO3: roundabout guidance receptor 3
CHL1: close homolog of L1
EPHA4: Ephrin type-A receptor 4
IGF1: Insulin-like growth factor-1 axis
ADGRG6: Adhesion G protein-coupled recep-
tor G6
ECMs: Extracellular matrices
MATN1: Matrilin 1
CALM1: Calmodulin 1 gene
VDR: Vitamin D receptor
AKAP: A-kinase anchoring proteins
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